
~~i4 HjI IC2-
U/ U2'C PG.

ENASIF D /L26 H

-3-

I4 11ow-ll14

VL; . 10486'

LO

IJ,

- !ov

UNLIMITED

TITLE: The VIPER Microprocessor

AUTHOR: J Kershaw

DATE: November 1987

SUMMARY

Most accidents are caused by human error. Computer control
systems in aircraft, 'hemical plant, nuclear reactors and so on
could in principle prevent many accidents, but in practice they
are not reliable enough to be put in charge of human lives. This
Report describes some of the developments in computer hardware and
software which are needed before this situation can change, and
introduces the VIPER microprocessor which has been designed
specifically for ultra-reliable systems. In conjunction with a
number of other RSRE Publications (see references) it defines the
VIPER architecture formally and describes some of its supporting
software. ,,-... ...

F ' r,;: :

•................"......... -

Copyrigh __; c~~..i
Controller HMSO London

1987

INS C, I.

' ' w m m=,,n,, Iiin NiiPLC.TI
m i iN i

Page 2

The VIPER Microprocessor

J Kershaw

CONTENTS

1 The need
2 The hardware problem
3 The software problem
4 Chip requirements
5 Architectural constraints
6 Design and manufacturing constraints
7 Support requirements
8 Validation of the design
9 The future
10 Acknowledgements
11 References

Appendix 1: VIPER machine definition

Appendix 2: The VISTA structured assembler

I THE NEED

Most accidents are caused by human error. The more reliable the
engineering of aircraft, ships, nuclear power stations, and so on
becomes, the more this is true: the majority of serious aircraft
accidents are ascribed to human error [1], and the Three Mile
Island incident might have been only a mishap if the operators had
not over-ridden the automatic control system [2). Most of these
accidents would not have happened if totally reliable, trusted
computers and totally correct software were available. The
Chernobyl disaster is perhaps the exception: no safety system can
do its job if it is switched off, but an effective system would
not allow itself to be disabled while the reactor was running.

If computers could be trusted to control dangerous systems like
aircraft and nuclear reactors, major gains in safety, performance,
and economy could be made. Existing Flight Management Systems in
civil airliners (which have only limited authority and are not
regarded as safety-critical) are already yielding improved
schedule-keeping and significant fuel savings.

-2-

Page 3

Conventional hardware and software techniques are unlikely to
inspire the level of confidence needed if computers are to be
placed in charge of human lives. It is conceivable that computer
hardware could achieve a failure rate of I in 1O-to-the-9th hours
operation, after prolonged separate testing of the components of a
highly redundant system, but how could this be done for software?
Software errors do not obey Gaussian statistics, which underly
most reliability prediction: how can a software error be a random
event, when it was present from the start?

A practical measure of confidence in a system is the cost of
insuring it. When asked tc insure an engineering structure, an
underwriter will consider how complex it is, how near to its
design limits it has been tested, how reliable its predecessors
have been, and how costly any failure would be. On these criteria
computer hardware is reasonably insurable, though most present-day
processors are too complex for comfort.

Insurance of a complete computer system, including its software,
against the consequences of breakdown is a much thornier problem.
At least one death appears to have been caused by a fault in a
computer program, controlling a hospital drug-dispensing machine.
Who is responsible - the equipment manufacturer? The academic
scientist who designed the algorithms? Or the programmer who
expressed them in terms the microprocessor could understand?
There is no clear-cut answer because, in this as in most cases,
none of the steps in the design process was expressed in a
sufficiently formal way for the error to be pinned down. The
present state of the software art is simply not capable of
achieving the degree of correctness demanded by life-critical
systems.

2 THE HARDWARE PROBLEM

Modern computers are exceedingly complex. It is questionable
whether any computer in general use has ever been fully specified,
in the sense of allowing its response to every possible
combination of inputs and instructions to be predicted. It is
beyond question that none has ever been fully tested; an
exhaustive test of even the simplest microprocessor would take
billions of years.

Safety-critical systems are necessarily simple, and often need
only limited computing power. Obviously, all the critical parts
of such a system are replicated several times to guard against
hardware failure. The moderate performance requirement and the
need for numbers of every significant component both suggest use
of single chip microprocessors. Unfortunately, existing
microprocessors are highly unsuitable: they are very complex, not
well specified, not generally available in "rugged" technologies,
not guaranteed against future design changes, and inclined to
ignore program errors such as arithmetic overflow which can have

-3-

Page 4

catastrophic effects. The complexity of these chips has other
more subtle consequences: they are well beyond the reach of any
formal validation technique, and they cannot make much use of
redundancy to improve reliability because of the extra silicon
area it would consume.

3 THE SOFTWARE PROBLEM

This will not be solved without a new programming technology.
Though safety-critical programs are likely to be small, they are
not so small that formal verification techniques can be applied
directly to them. Beyond about 10000 machine instructions (tiny
by modern standards) the work involved in formal, mathematical
verification quickly becomes unmanageable. Even if a "proof" can
be achieved, all that has been proved is that given hardware which
exactly meets its specification the program will also exactly meet
its specification. Either or both specifications may still be
wrong. Most practical programs are therefore unverifiable, and
likely to remain so.

The few life-critical programs which have been written so far have
relied on rigorous programming discipline, prolonged testing, and
(recently) mathematical analysis of the program texts. Two suites
of programs developed originally at RSRE and Southampton
University [3] are in regular use analysing the control flow, data
use, information flow, and semantics of real-time software; they
have found many errors and omissions but do not of themselves
produce correct programs. They merely expose the errors in
existing programs. Most of these programs are written in assembly
language, but if a high-level language were used it might be
possible to analyse both the source and the object program and to
check for correspondence.

Programming discipline is much easier to enforce in a high-level
language. Present-day languages such as Pascal contain constructs
like variant records, computed "gotos", and pointer manipulation
which though efficient could never be tolerated in safety-critical
software. They may also allow range and bound checks to be
"turned off" in the interests of speed. An ultra-reliable program
cannot avoid these overheads; it must be written either in a
strictly defined subset of a conventional language or in a special
language. The result should be a highly-structured, easily
analysed program, perhaps fairly bulky in source text form but
usually quite small in object code.

In an ideal world, the designer of a reliable computer system
would begin with:

(a) A formal specification of the requirement, provably

complete, consistent, and unambiguous.

(b) A formal description of the programming language to be

-4 -

Page 5

used, similarly provable.

Having chosen a computer, he would then have:

(c) A formal description of the hardware, and its response
to every possible combination of inputs and instructions.

(d) A compiler to turn the language of (b) into machine code
for (c), with a proof of correspondence between source
and object programs for every construct of the language.

Once the programs are complete he will have:

(e) An operational program, with proofs that both source and
object programs conform to (a).

The real world is rarely like this. (a) and (b) are practical in
simple cases now, and a programming language is currently being
developed in the Computing Division of RSRE which should be
susceptible to formal definition [4].

(d) is only likely to be possible for a compiler which does very
little optimisation, to avoid the problems of interaction between
constructs.

(e) can be approximated by the program analysis techniques
mentioned above, though a great deal of skilled human inspection
is still needed.

Point (c), and the characteristics of a chip or chips which could
make it possible, is the subject of the rest of this paper.

4 CHIP REQUIREMENTS

Most of the requirements below can be met individually by
conventional microprocessor chips, though no existing chip can
meet all of them. One of the most difficult requirements springs
from the insistence of regulatory bodies such as the CAA and the
Nuclear Installations Inspectorate that all the design and
manufacturing details of safety-critical systems should be
available to them; semiconductor manufacturers are very reluctant
to disclose information of this kind, and are even more reluctant
to commit themselves to long term supply of chips made by a
specific process.

Most of the other requirements can be summarised in the single
word "simplicity".

4.1 The chip must have a reasonably large address range, not
to cope with large programs so much as to leave scope for
multiple versions or "get-you-home" programs. 20 bits are
probably enough.

-5-

Page 6

4.2 The logic must be described in formal terms, e.g. in the
hardware description language ELLA [9], and must be amenable
to simulation with reasonable efficiency.

4.3 The design must be within the reach of a number of
established semiconductor technologies, including those which
can offer high temperature and radiation resistance.

4.4 The order code must be suitable for generation by a
compiler, and it must incorporate permanent checks for a
number of errors (e.g. arithmetic overflow) which are often
ignored by conventional microprocessors. The order code must
be simple and regular enough to permit analysis and (in
special cases) verification at the object code level.

4.5 The interface to the outside world must be simple and
predictable, since the chip will almost always be used with
others of its kind in a multi-channel redundant system. This
suggests that the chip should not have very much internal
concurrency, a requirement already implied by 4.2 and 4.3.

4.6 The chip must have a reasonably high performance, at least
500000 operations per second.

4.7 The design process, from paper specification to silicon,
should be as highly automated as possible. This minimises the
risk of mistakes, gives the best chance of formal
correspondence proving, and eases the task of implementing the
chip in a range of technologies. A cell array or gate array
technology is the most likely way of achieving this level of
automation at present.

4.8 The chip should be easily testable. This implies that (at
least) every memory element in the circuit should be readable
and settable from outside in a limited number of cycles and
ideally that every logic node should be accessible. The last
is probably ruled out by the limited number of pins available
on I.C. packages, but the first can be achieved by techniques
such as "scan path" design, in which all the memory elements
(flip-flops) in a chip are connected in a long serial shift
register which can be clocked from outside.

4.9 The design must be to some extent "public". Manufacturers
of systems will rarely use a device that cannot be obtained
from at least two suppliers, and regulatory bodies like the
CAA will not approve life-critical systems unless the whole
design and manufacturing process is available for their
inspection.

A chip to meet these requirements has been designed by the High
Integrity Systems section of Computing Division and implemented in
three distinct technologies by two British VLSI manufacturers.
Its name is VIPER: a Verifiable Integrated Processor for Enhanced
Reliability.

-6-

|V

Page 7

5 ARCHITECTURAL CONSTRAINTS

5.1 Word size

Floating point arithmetic is ruled out on grounds of complexity,
and also because it is inherently inexact and therefore resistant
to verification. This implies that VIPER systems must use fixed
point arithmetic, which needs a lot of bits if neither range nor
accuracy is to be sacrificed. 24 bits might just be enough for
arithmetic, but it is an inconvenient size for instructions: too
big for non-addressing instructions and too small (with a 20 bit
address field) for memory addressing instructions.

Variable-sized instructions complicate the logic and the external
interface severely, and also make the machine's behaviour in the
presence of faults less predictable - consider the effect of
obeying a program one byte out of alignment. Therefore VIPER
instructions all occupy 32 bits, and all interface transactions
are in units of 32 bits.

5.2 Memory management

Only the simplest memory management techniques are permissible in
safety-critical software. Static, compile-time allocation is the
rule, to avoid any risk of a program failing at run time through
lack of memory. The VIPER architecture therefore does not make
special provision for dynamic memory allocation, though it does
not rule it out in case developments in analysis techniques make
it acceptable in the future.

A simple stack, for subroutine entry and exit, is less of a risk.
If recursion is absent it is easy to calculate the maximum
subroutine nesting depth of a program, and static analysis of the
code can show whether or not every path through a subroutine ends
in a RETURN instruction (jumps out of subroutines are of course
unimaginable). The VIPER architecture has no built-in stack,
because of the extra logic it would require and because of a
general desire to keep instructions free of side effects, but it
allows a stack to be implemented easily in software.

Indirect addressing is avoided in reliable programs, except in the
most rigidly constrained circumstances, but some means of
computing an address is essential. VIPER allows indexed
addressing, in which the contents of a register is added to the
address field of an instruction to generate the eventual memory
address, but also provides comparison instructions (see 5.3) which
allow the index to be checked before use.

5.3 Arithmetic

VIPER provides 32 bit twos-complement addition and subtraction.
Multiplication and division are not implemented in the present
design but instruction codes have been left vacant for them.

7-

Page 8

Arithmetic overflow on either addition or subtraction causes the
VIPER processor to stop, and signal to the outside world that an
error has occurred. This is quite different from the response of
a conventional microprocessor, which merely sets a flag and goes
on to the next instruction. Unanticipated overflow is a
catastrophic error, in that it delivers a grossly incorrect
result, and the best response to errors in a safety-critical
environment is usually to freeze and either allow the faulty
channel to be out-voted (in a multi-channel system) or revert to a
simpler back-up system. The very worst response is to go on
processing and corrupt the rest of the system. Once stopped, a
VIPER processor can only be restarted by the RESET signal.

There are situations where overflow is not significant, e.g. when
adding or subtracting the less-significant parts of
multi-precision numbers, and for these VIPER has different
instructions. Unsigned add and subtract ignore overflow, but
preserve "carry" from the 32nd bit in a single bit register called
B so that it can be added to or subtracted from the next most
significant part.

Yet another form of subtraction is needed for comparisons. This
subtraction is clearly signed, but overflow is not serious because
the result is only tested and not stored. The subtraction must be
done, in effect, with a 33 bit arithmetic unit to ensure that the
result always has the correct sign. The result of the VIPER
"corm-pare" instruction is a Boolean in the B register.

Apart from B, VIPER has no "flags" in the usual sense. Conven-
tional microprocessors have 6 or more, and every one represents a
conceptual doubling of the effort needed to verify a program and
of the time needed to test a processor.

5.4 Interrupts

Random interrupts are undesirable in reliable software. Safety-
critical programs do not normally allow interrupts, except
possibly a timer interrupt at fixed intervals. Even this
interrupt would probably be regarded as an error unless it
occurred while the program was explicitly waiting for it.
"Waiting for an interrupt" can be achieved just as well by
polling, in which the program repeatedly asks the interrupting
device whether it needs attention, with the advantage that po9ing
is much less of an obstacle to analysis and/or verification than
the possibility of random interrupts.

Any language designed for safety-critical applications will be
constructed so that the maximum execution time of any sequence of
statements can always be calculated: the density of poll
instructions can be adjusted to give the required response time.

VIPER has no interrupt mechanism. A "reset" signal is provided to
set the processor in a known state initially, but this is destruc-
tive: the previous machine state is lost.

-8-

Page 9

5.5 Input/Output

In this VIPER is fairly conventional. Specific input and output
instructions are provided, with the same address construction
mechanisms as for memory references, but there is no reason why
memory-mapped I/0 should not also be used. All 20 address bits
can be used to address peripherals.

The hardware interface is also conventional, with a REPLY signal
so that slow peripherals can tell the processor when they are
ready. One unusual feature is that the REPLY mechanism has a
time-out: if REPLY is not asserted within 63 clock cycles after a
request has been made, the processor stops and signals an error.

6 DESIGN AND MANUFACTURING CONSTRAINTS

VIPER could be made easily as a hand-crafted custom chip - it
needs rather fewer gates than a Z80, in a much more regular
structure. Building VIPER in this way would result in the highest
performance and the smallest silicon area, but it would also
require a massive design effort most of which would have to be
repeated for each new manufacturing technology. Custom chips are
also more difficult to simulate than cell array or gate array
designs, where the characteristics of each primitive cell are
known in detail. Repetitive arrays of cells are much more
amenable to CAD than random logic networks, leading to a more
highly automated and probably more predictable design process. A
custom chip starts from scratch in accumulating reliability
statistics, whereas a chip based on a widely used standard
substrate can benefit from the experience of other devices. VIPER
has therefore been based from the start on gate array and cell
array technology.

The first VIPER implementation used the UK5000 gate array. This
was a joint project between RSRE, Marconi Electronic Devices Ltd
(MEDL), British Telecom, and a number of other UK electronics
companies. "5000" refers to the number of "usable" gates on the
device, allowing for the inevitably less than perfect efficiency
of the layout process. The chip actually contains 410 dedicated
single-bit latch circuits and 2400 general purpose gate cells,
each made up of two N-channel and two P-channel MOSFET's. The
latch cells are internally clocked, and are permanently connected
together in a serial "scan path" register so that all of them are
accessible for testing.

The manufacturing technology of UK5000 is silicon gatE CMOS, with
a minimum feature size of 2 microns approximately. Layout of a
UK5000 chip is fully automatic, once a gate-level description
exists. The CAD software is interfaced to the logic design
language ELLA, so that a design can be taken automatically from a
gate-level description in ELLA through to the final silicon.

-

Page 10

VIPERS have been fabricated by MEDL on UK5000 substrates, and (as
a private venture) using the CELLSOS Silicon-on-Sapphire process.
The SOS chips are available commercially and can be supplied to
various environmental requirements up to ESA "space qualified"
standard. A third implementation is in progress at Ferranti
Electronics Ltd using their proprietary CDI (bipolar) process,
which offers good environmental performance with reasonably low
cost. All three families of VIPER chips are pin-compatible.

The VIPER design is just practical on UKO00D, with a bare minimum
of "frills". Several highly desirable features have had to bc
left out of the prototype design:

6.1 Multiplication and division. These must be done slowly by
subroutine or by external peripheral hardware. Gaps have been
left in the order code for them.

If VIPER had been designed as a microprogrammed machine,
multiply and divide could be done with very simple hardware.
Unfortunately a microprogrammed implementation would be much
slower, and would need an external microprogram memory with
its own special interface. This option was rejected in order
to keep the basic machine simple and fast.

6.2 More registers. The present design has a minimal set
consisting of:

An arithmetic register A (32 bits)
An addressing register X (32 bits)
A subroutine link register Y (32 bits)
An instruction address register P (20 bits)
The Boolean register B (1 bit)

These total 117 bits, and with various temporary registers use
220 latch cells and nearly all the combinatorial cells of
UK5000. In practice X and Y can be used for arithmetic, and Y
doubles as a second addressing register, but this duplication
of function would be better avoided. Multiplication and
division require an arithmetic extension register for 64 bit
temporary products - again Y could be pressed into service.

6.3 Support for multi-channel redundancy. The initial VIPER
chips ("VIPER I") provide no special mechanisms for easing the
interconnexion of groups of VIPERs in a multi-channel system.
Theoretical work by Cambridge Consultants Ltd [14] has shown
that fairly simple enhancements to the interface logic can
allow a pair of VIPERs to work together as a unit which can
detect and report virtually all faults in itself or in its
shared memory. This new device is known as VIPER IA, and is
described briefly in Section 9.

6.4 Dynamic memory control. Safety-critical applications will
probably avoid dynamic memory with its problems of periodic
refreshing, radiation- and temperature sensitivity, and a
higher random error rate than static memory. Ground test rigs

10 -

Page 11

however, and some less critical applications may be able to
use the much cheaper and denser dynamic memory.

Periodic refreshing of dynamic memories can be done either by
the processor (as in the Z80 and Z8000) or by external logic.
An external refresh system needs its own timing, to enforce
the maximum interval between refresh cycles, and a
clash-resolution circuit to decide whether the processor or
the refresh system asked first. This logic is complex and
non-deterministic. A much better solution is to build the
refresh control in to the processor, using the existing
processor timing to avoid the need for clash resolution. Not
enough cells are available in the UK5000 version of VIPER to
accommodate this.

7 SUPPORT REQUIREMENTS

A surprising amount of supporting software and hardware is needed
even to begin development of a microprocessor chip. Most of the
items below would be needed for any major chip design, though the
formal descriptions have all too frequently been skipped in the
past. The items are described as far as possible in order of
appearance.

7.1 An English description of the VIPER order code. This is
included as Appendix 1.

7.2 A formal description of the order code in a language based
on first order logic [6, 16]. The language used is LCF-LSM
[5].

7.3 A high level simulation program to "animate" the design
and allow early software testing. Our simulator is written in
Algol 68 and runs on VAX machines; it can execute about 50
VIPER instructions per second [15). In practice 7.2 and 7.3
have been developed together; the present simulator is as
close as practicable to the LCF-LSM definition of VIPER and
(interestingly) runs faster than its less rigorously
constructed predecessor. The simulator is the practical
definition of VIPER, and can be used to generate standard
correct outputs from test programs. It may eventually be
verifiable in the formal sense.

7.4 A simple assembly language for writing test programs. As
its name (VITAL: VIper Temporary Assembly Language) implies,
this language is not intended for applications programming.

7.5 A microprogrammed emulator to run VIPER programs at a
realistic speed. The GEMINI microprogrammed host computer [7]
has been used in conjunction with a CP/M-based microcomputer
to provide a simple but practical VIPER programming
environment. It runs at about 200000 VIPER instructions per

-]1

Page 12

second. The microprogram size (a measure of the complexity of
the VIPER order code) is 168 GEMINI instructions. The
complexity of the GEMINI architecture means that this
microprogram is unlikely ever to be verifiable.

7.6 Comprehensive test programs to exercise 7.3 and 7.5, and
to demonstrate correspondence between them. These are written
in VITAL, and will continue to be developed throughout the
project. The present suite takes about 20 minutes to run on
the Algol 68 simulator. These programs are now used as
acceptance tests for VIPER chips on delivery.

7.7 A logic design of VIPER in ELLA [8, 9]. Development of
this overlapped items 7.2 to 7.6. The ELLA design was used
both to produce one of the eventual chip layouts and to
generate a set of test vectors for production-line testing of
VIPER devices. Both manufacturers (MEDL and Ferranti) use
these test vectors.

7.8 A host system to provide peripheral support for VIPER
chips. This consists at present of a simple Single Board
Computer with 8k x 32 bits of writable memory, a pair of
buffered connectors to the VIPER bus, and a host processor
(Intel 8039) to give control and loading facilities. A more
powerful hardware development environment has been designed
around a set of standard "Double Euro" cards, and will shortly
be available commercially through Charter Technologies Ltd of
Worcester.

7.9 A practical language for writing application programs.
The obvious candidate is Pascal, of which a rigorously defined
subset exists [13]. A compiler for this subset, generating
VIPER code, is being developed and should be available by the
Summer of 1988. Much work is being done on the use of Ada for
critical software, and in the longer term there is no doubt
that a reduced version of Ada will be the language of choice
for use with VIPER. In the meantime, a language is required
now. To fill the gap while suitable versions of Pascal and
Ada are being developed, RSRE have implemented a structured
assembly language called VISTA (VIper STructured Assembler)
which, like the hardware development environment, will be
available from Charter Technologies Ltd. A brief description
of VISTA is given in Appendix 2.

8 VALIDATION OF THE DESIGN

VIPER is designed to be used in applications where a serious
malfunction may result in loss of life or massive environmental
damage. It is not enough therefore simply to produce a formal
specification of the device; the chips themselves must be shown to
conform to that specification in a way which satisfies Regulatory
Authorities such as the Civil Aviation Authority and the Defence

- 12 -

Page 13

Ordnance Board.

At the lowest level, actual devices can only be tested. "Proof"
in the mathematical sense is not meaningful for a physical object
which may "wear out" or be damaged. Two of the three VIPER
implementations (UK5000 and Ferranti) contain extensive built-in
test logic to improve test coverage; all VIPERs are subjected to
the battery of tests described in 7.6 which have been generated
directly from the design document.

This document must be correct. To ensure this is so, the design
of VIPER (in ELLA) has been validated using formal algebraic
techniques which have shown that the design implies the top-level
specification - that is, given the design, the specification must
be true. Much of the work of validation has been done at
Cambridge by Cohn and Gordon (5, 10]. The whole validation
process is described in references [6, 10, 11, 12, 16].

9 THE FUTURE

VIPER IA chips (in Silicon-on-Sapphire) are expected to be
available in the second quarter of 1988. These differ from VIPER
I only in the interface arrangements; to the programmer they are
identical. The two major enhancements are:

9.1 The 32 bit data bus is extended to include 8 parity bits.
These are generated in such a way that any combination of
memory errors within a single 8 bit byte is detected. Thus
any breakdown of a single memory chip (e.g. loss of power
supply) will cause a VIPER IA to stop. In addition, more than
96% of random double-bit errors are detected.

Parity checking can be disabled for devices which are unable
to generate the extra bits, e.g. simple peripherals.

9.2 VIPER 1A has a mode control input, which can set the chip
into active or monitor mode. In active mode a VIPER IA
behaves much like a VIPER 1, and can be used singly in a
non-critical application. In monitor mode, VIPER IA does not
generate outputs but instead inspects the input signals on
what would have been the output pins. Internally it works as
normal, comparing the signals it receives with their
internally-generated counterparts. Any difference is
signalled on the "Stop" pin which is cross-coupled to the
"Error" input of the active chip.

To guard against faults in the comparator logic (which is used
only in the monitoring chip) the essential components are
duplicated. Each signal is kept in both normal and
complemented form, using logic which delivers an illegal
output in the presence of any single error.

- 13 -

Page 14

A pair of VIPER IA chips with shared memory and peripheral
interfaces forms an error-detectin2 computer module which can then
be used in a 2 or 3 channel fault-tolerant system. With careful
electrical design, the error-detecting properties can be extended
into memory and peripheral addressing - memory data errors are of
course detected by the parity bits. Reliab-e-error detection
removes the need for voting, and with it much of the complexity of
traditional fault-tolerant system desins; with paired VIPER lAs a
simple active/standby architecture is nearly always adequate.
Reference [14] gives more details of the system implications of
VIPER IA.

10 ACKNOWLEDGEMENTS

VIPER has been developed by the High Integrity Systems section of
the Computing Division at RSRE. All the members of the section
have contributed to practically every item mentioned in this
Report. Much of the validation work, and the original development
of LCF-LSM, were done by Dr M Gordon and Dr A Cohn at the
Cambridge University Computing Laboratory. Cambridge Consultants
Ltd have made a substantial contribution to the design of VIPER
IA.

11 REFERENCES

1. "World Airline Accident Summary"
Safety Data and Analysis Unit, Airworthiness Division, Civil
Aviation Authority.

2. "Report of the President's Commission on the accident at Three
Mile Island" by John G Kemeny. Library of Congress Catalog
card number 79-25694, October 1979.

3. "The assessment of safety-critical software" by B D Bramson.
MoD unpublished report, 1982.

4. "Orwellian programming in safety-critical systems" by
I F Currie. Proceedings of the IFIP Working Conference on
System Implementation Languages, experience and assessment.
University of Kent at Canterbury, 1984.

5. "LCF-LSM" by Mike Gordon. Technical Report no. 41, University
of Cambridge Computing Laboratory.

6. "VIPER Microprocessor: Formal Specification" by W J Cullyer.
RSRE Report 85013, October 1985.

7. "GEMINI microprogrammer's handbook" by J Kershaw.
RSRE Report 82015, 1982.

- 14 -

Page 15

8. "Electrical, environmental, and timing specification of the
VIPER microprocessor" by C H Pygott.
RSRE Report 86006, June 1986.

9. "ELLA: a hardware description language" by J D Morison,
N E Peeling, and T L Thorp. IEEE International Conference on
Circuits and Computers, ICCC 82, New York, 1982.

10. "A proof of correctness of the VIPER microprocessor: the first
level" by A Cohn. Proceedings of the Hardware Verification
Workshop, University of Calgary, Canada, January 1987.

11. "VIPER - Correspondence between specification and major-state
machine" by W J Cullyer. RSRE Report 86004, 1986.

12. "Formal proof of correspondence between the specification of a
hardware module and its gate level implementation"
by C H Pygott. RSRE Report 85012, November 1985.

13. "SPADE Pascal" by B A Carre and C W Debney.
Program Validation Ltd, Southampton 1985.

14. "A self-checking computer module based on the VIPER micro-
processor - a building block for reliable systems"
by M P Halbert. Safety and Reliability Society Symposium,
Altrincham, England, November 1987.

15. "VIPER: Simulation of Specification - User's Guide"
by W J Cullyer. MoD unpublished report, 1986.

16. "Application of formal methods to the VIPER microprocessor"
by W J Cullyer and C H Pygott. IEE Proceedings Vol 134
Part E, number 3, pp133-141. May 1987.

- 15 -

Page 16

Appendix 1.

VIPER machine definition

The VIPER machine has 3 general purpose 32 bit registers (called
A, X, and Y), a program address counter (P), and a single bit
Boolean register (B). Memory addresses occupy 20 bits, so only
the least significant 20 bits of P are meaningful: loading a "I"
into any of the top 12 bits will cause the machine to stop.

All instructions occupy 32 bits, divided into a 12 bit function
code and a 20 bit address.

I Function 12 bits I Address 20 bits I
+-------------+---+

The function code is further divided into:

I RF I MF I DF I CF i FF I
I 2 bits I 2 bits 1 3 bits I bit I 4 bits I
++--+

Most instructions are of the form D :- R op M, where D and R
are registers chosen from A X Y P. M is either a 20 bit
literal constant or the contents of a 32 bit memory location.
Memory addresses are limited to 20 bits, and the machine will
stop if a computed address (MF - 2 or 3, see below) exceeds
this limit.

RF: source register field

0 R is contents of register A
1 R " ' .. X
2 R" Y
3 R P

MF: memory address control field

0 M is the address, i.e. 20 bit positive constant
1 M is [address], from/to memory or peripheral
2 M is (address + X] " " "
3 M is (address + Y] " " " "

- 16 -

Page 17

DF: destination control field

0 D is the A register
I D " H X "

2 D" "Y
3 D " P
4 D" " P " if B, else do nothing
5 D" D P " if NOT B, else do nothing
6 D is M in peripheral space) see
7 D is M in memory space) below

The sequence in which the CF, DF, and FF fields are inspected is
important:

V
+-------------+ yes The instruction is a comparison. The
I CF -I I .------ > DF field is ignored.

I no
V

------------- yes The instruction is "store R": M will
I DF >= 6 I ------ > be used as the destination, stopping if
------------- MF = 0. The FF field is ignored.

I no
V

+------------- yes If B is false do nothing, otherwise ALU
I DF - 4 I ------ > operation to P.

I no
V

------------- yes If B is true do nothing, otherwise ALU
I DF = 5 1 ------ > operation to P.

I no
V

+---
I ALU operation to register specified l
i by DF (in the range 0 to 3). I
+---

- 17 -

Page 18

ALU operations

If CF = 0 and DF < 6, FF and possibly MF specify the ALU function:

FF - 0 D : -M i.e. M operand complemented
1 : P then P :- M from memory space
2 D : M from peripheral space) equivalent
3 D : M from memory space) if M 0
4 D : R + M, B :- carry
5 D : R + M, stop on overflow
6 D : R - M, B :- borrow
7 D R R - M, stop on overflow
8 D : R XOR M
9 D :R AND M
10 D :-R NOR M
11 D := R AND -M

12, MF = 0 D := R/2, sign bit copied
MF = D:= R >> I through B, i.e. D31 :=B,

DO..30 := R1..31, B := RO
MF = 2 D := R * 2, stop on overflow
MF = 3 D := R << 1 through B, i.e. DO := B,

D1..31 := RO..30, B := R31

13 spare instruction, stop
14 spare instruction, stop
15 spare instruction, stop

Note that if the destination is P (OF - 3, 4, or 5) only functions
1, 3, 5, and 7 are legal. Attempting to obey any other will cause
the machine to stop. Function 1 operates only on P; if DF specifies
any other destination register the machine will stop.

The operation D :- R can be achieved by performing D :- R + 0
or (for destinations A, X, Y) D :- R AND -0 which may be faster.
D :- -R can be done as D := R NOR 0.

18 -

Page 19

Comparisons

If CF = 1, FF specifies a comparison. Comparisons never change
anything other than B, apart from the change in P implied by
continuing to the next instruction, and never cause the machine to
stop unless a memory address exceeds 20 bits (MF - 2 or 3). For
comparisons the ALU function is forced to "R - M", and the arith-
metic is assumed to use at least 33 bits with initial sign
extension and no overflow detection, allowing signed or unsigned
comparison of 32 bit values.

The new value of B is derived from the result of the subtraction as
follows - bit32 is the conceptual extra (33rd) bit:

FF = 0 B :- bit32 (i.e. R < M)
I B :- NOT bit32 (R >= M)
2 B := allzero (R = M)
3 B := NOT allzero (R /= M)
4 B :- bit32 OR allzero (R <= M)
5 B :- NOT bit32 AND NOT allzero (R > M)
6 B :- borrow (unsigned R < M)
7 B :- NOT borrow (unsigned R >- M)

FF = 8 to 15: the set of operations is repeated, but if the
result is 0 (i.e. FALSE) B is left unchanged.

-19-

Page 20

Appendix 2

The VISTA Structured Assembler

VISTA is a high-level assembly language: its statements are
essentially machine instructions embedded in an Algol 68 - like
syntax. It will be superseded eventually by higher-level
languages for application programs, but in the interim it provides
a reasonably friendly programming environment and a vehicle for
writing a limited range of VIPER application software.

VISTA is not a safe language, in the sense that SPADE Pascal is,
though it doesTimit the programmer to structures which are
reasonably free of complications. For example, there are no
pointers or GOTO statements in VISTA. If VISTA is to be used for
safety-critical software, the program texts must be subjected to
static analysis by a tool such as MALPAS just as they would be
with a conventional language. This process is made easy by MAVIS,
a program which translates from VISTA to the MALPAS Intermediate
Language preserving as much as possible of the programmer's
original structure. In fact MAVIS and the VISTA language were
designed together: VISTA includes only those constructs which can
be analysed effectively by MALPAS.

This note describes VISTA informally by means of an annotated
example, which uses most of the constructs of the language, though
one or two have escaped e.g. CONTINUE. The program is fairly
trivial and makes no pretensions to safety: it reads in a text
and then counts occurrences of selected words in that text. The
line numbers are merely for reference in the notes below, and are
not part of the program.

The only aspects which will not seem reasonably familiar are the
"region declarations" (lines 4 to 7) which define regions of
memory into which code, constants, and so on are to be placed, and
the fact that procedures in VISTA are declared after (rather than
before) their calls. There is no profound reason for this: it
simply seems more natural to put the main program first. No
"loopholes" are allowed for recursion, which is forbidden in
VISTA. Notice that A, X, Y are the VIPER machine registers.

I PROGRAM Example of VISTA: word frequency counter.
2
3
4 CODE prog FROM 0 TO 3999; -- memory regions
5 CONST const FROM 4000 TO 4095; -- .. with bounds
6 DATA data FROM 16r8000 TO 16r8000+8191;
7 PERI peri FROM 0 TO 1;
8
9

-20 -

Page 21

10 INT last, count, match, k, p, q; -- in the DATA region
11
12 CHAN keyboard, screen; -- in PERI region
13
14 INT key[20], text[9000j; -- more data, vectors
15
16 INT sp = 32, eof = 26, cr = 13; -- in the CONST region
17 INT msl[I = "\nInput the text: \0\"; -- messages
18 INT ms2[I = "\nKeyword: \0\";
19 INT ms3[I = "\nNumber of occurrences is \0\';
20 INT ms4[I = "outside range\O\';
21
22 DISPLAY Program starting!
23
24 A := 1; CALL message; -- invite user to type
25 A := 1; last := A; -- in a sample of text
26 A := sp; textiOl := A;
27
28 WHILE (CALL getchar; CALL upper) A /= eof
29 DO X := last; -- getchar may change X
30 CASE A >= 'A' AND A <= 'Z': SKIP; -- letters
31 A >= '0' AND A <= '9': SKIP -- digits
32 ELSE A := sp -- all others
33 ESAC;
34 text[X] := A; X := X + 1; -- store the character
35 last := X
36 OD;
37
38 X := last; A := sp; text[XJ := A; -- terminates last word
39
40 REPEAT A := 2; CALL message; -- ask for a key word
41 A := 0; p := A;
42
43 WHILE (CALL getchar; CALL upper) A /= cr
44 DO X := p;
45 keyK] := A; -- read & store key word
46 X:= X + 1;
47 p :=X
48 OD;
49
50 X := p; A := sp; keylX] := A; -- terminates key word
51 IF X = 0 THEN BREAK FI; -- exit if null key word
52 A := 0; p := A; count := A;
53
54 WHILE (Y 0; match := Y; X := p) X < last

55 DO WHILE (A := keylY]) A = text[Xj
56 DO IF A =sp
57 THEN A := 1;
58 match := A; -- end of word, no mismatch
59 BREAK
60 FI;
61 X:= X + 1;
62 Y := Y + 1 -- more, keep trying
63 OD;
64 IF (A := match; X := p; Y := textiX-1])

- 21 -

Page 22

65 A /= O AND Y =sp
66 THEN A count; whole of key matched
67 A := A + 1; -- space before word?
68 count := A -- musn't find e.g. ..

69 FI; -- .."king" in "smoking"
70 X := X + 1; p := X
71 OD;
72
73 A 3; CALL message; -- print number of matches
74 A count; CALL print
75
76 UNTIL (A key[Ol) A = sp; -- till null key word input
77 STOP;
78
79 -- Now for the procedures, notice they follow the main program
80
81 PROC getchar: (WHILE (A := INPUT keyboard) A = 0 DO SKIP OD);
82
83
84 PROC upper: (IF A >= 'a' AND A <= 'z' THEN A :- A-('a'-'A') FI);
85
86
87 PROC print: -- unsigned decimal output
88 BEGIN INT lzflag;
89 X := 0; -- suppress leading zeros
90 lzflag := X;
91 IF A < 0 OR A > 9999 THEN A := 4; CALL message
92 ELSE X := 1000; CALL digit;
93 X := 100; CALL digit;
94 X := 10; CALL digit; -- 4 digits maximum
95 X := 1; CALL digit
96 FI;
97
98 PROC digit: -- prints 1 digit of number in A
99 BEGIN INT power; -- X must hold a power of 10, X /= 0
100 power := X;
101 Y := 0;
102 WHILE A >= power DO A := A - power; Y := Y + 1 OD;
103 IF X = 1 OR Y > 0 THEN lzflag := X FI;
104 Y := Y + '0'; -- convert to ASCII
105 X := lzflag;
106 IF X = 0 THEN Y := sp FI; -- leading zero
107 OUTPUT Y, screen
.08 END
109 END; -- of "print"
110
111

112 PROC message: -- message selected by
113 BEGIN INT select; -- .. A register, 1 to 4
114 select := A;
115 X := 0;
116 WHILE TRUE -- i.e. do forever, exit..
117 DO CASE (A := select) -- .. by BREAK or RETURN
118 A = 1: (A msl[X]);
119 A = 2: (A := ms2IX]); -- get 4 bytes from message

- 22 -

Page 23

120 A = 3: (A := ms3LXj);
121 A = 4: (A := ms4[Xj)
122 ELSE A := 0
123 ESAC;
124
125 Y := A AND 255; -- now output the chars
126 IF Y = 0 THEN RETURN FI; -- .. terminating on a NULL
127 OUTPUT Y, screen;
128 CALL right8;
129 IF Y = 0 THEN RETURN FI; -- return from "message"
130 OUTPUT Y, screen;
131 CALL right8;
132 IF Y = 0 THEN RETURN FI;
133 OUTPUT Y, screen;
134 CALL right8;
135 IF Y = 0 THEN RETURN FI;
136 OUTPUT Y, screen;
137 X := X + 1
138 OD;
139
140 PROC right8: -- 8 place right shift
141 BEGIN
142 A := A/2; A := A/2; A := A/2; A := A/2;
143 A := A/2; A := A/2; A := A/2; A := A/2;
144 Y := A AND 255
145 END
146
147 END -- of "message"
148
149 FINISH -- of program

Notes (by line number)

1 All programs begin with PROGRAM, the rest of the line is taken
as a title. VISTA has no "separate compilation" facility, but
source-text inclusion is provided:

INCLUDE Iuser.sub]file.vis

will incorporate the contents of the file named at the point
where the INCLUDE directive appears. The file name follows
standard VMS conventions. INCLUDE directives should occupy a
line to themselves. An INCLUDEd file may itself contain
INCLUDE directives, nested to any reasonable depth.

4..7 Region declarations. All storage in a VISTA program is alloc-

ated in a defined region, in ascending order of address. The
assembler will report an error if a region fills up. Constants
are kept separate from data to allow use of RON. The PERI
region has a separate address space from the other three.
Notice the use of decimal and hex numbers (other bases can be

used e.g. Br for octal, 2r for binary) and of constant

- 23 -

Page 24

expressions which can be arbitrarily complex.

Notice the comment, beginning with -- and extending to the end
of the line.

10 Ordinary "object" declarations in the DATA region. The only
data types allowed are INT and BITS: both are simple 32 bit
words. There is no restriction on the use of either, but future
versions of the assembler may comment on suspicious usages e.g.
logical operations on an INT. All storage allocation in VISTA
is static.

12 Peripheral addresses in the PERI region, usable only with INPUT
or OUTPUT (see lines 81, 107).

14 Vectors of variables, lower bound 0. Only one dimension is
allowed.

16 Constants, to be placed in the CONST region. These are just
ASCII character values. Wherever VISTA expects a constant (e.g.
here oi as a vector size, line 14) a constant expression can be
written using any of the usual arithmetic and logical operators.
Once declared, a named constant (e.g. "eof") can be used in
constant expressions.

17..20 Vectors of constants. These can be given values either as a list
of constant expressions e.g. (1, 2, 3, 4) or (as here) a string
of 7 bit ASCII characters. Characters are stored four per word,
least significant first. Notice the special characters \n (line
feed) and \0\ (character of value 0, used here as a string
terminator). Characters can also be used as individual constants:
the declaration on line 16 could equally well be written as

INT sp = ' ', eof ='\26\', cr = '\c';

22 DISPLAY is treated as a comment, but the text which follows (up
to the end of the line) is included in the output file for use by
the VISOR simulator program. VISOR will print the "display" text
whenever the instruction following is obeyed.

24 Instructions are translated one-loi-one to VIPER machine instruc-
et tions. There are three 32 bit registers called A, X, Y of which
seq. X and Y can be used as index registers. Y is changed by the CALL

instruction, but otherwise the registers can be used interchang-
eably.

28 Notice the "preface block" (CALL getchar; CALL upper) which is
optional before a condition to set up the register contents. No
explicit arguments are allowed with procedure calls, but A and
X can be used freely to hand over parameters.

30..33 The VISTA "CASE" statement requires an explicit predicate on each
limb. A single preface block is allowed before the first cond-
ition. Conditions are tested in the order written and never cause
a change in the register values; vhen a condition is found to be

- 24 -

Page 25

true the corresponding limb is entered and followed by exit from
the CASE statement.

Notice the use of AND as a connective in conditionals. Any number
of AND or OR connectives may be used, but not both in the same
condition. No brackets are allowed. Without these restrictions
(which arise because of the need to map VISTA statements into
single VIPER instructions) it would have been possible to use a
simple IF - THEN - ELSE here.

Character constants generate the standard ASCII representation
without parity.

The SKIP statement has no effect (and generates no code) but is
necessary for syntactic reasons.

32 The ELSE limb is optional. If it were omitted and no condition
was true, a CASE statement would cause the machine to stop. If
you want a CASE statement to do nothing in this situation, use
ELSE SKIP.

40 Loop constructs are WHILE - DO - OD and REPEAT - UNTIL.

51 BREAK and CONTINUE are valid only in a WHILE or REPEAT
statement. Their effect is, respectively:

Exit from the most local loop, i.e. jump to the
statement following OD or UNTIL <condition>

Proceed to the next cycle of the most local loop,
i.e. jump to the beginning of the condition after
WHILE or UNTIL.

The jump in this case is to line 77

77 The STOP statement generates an illegal VIPER instruction which

stops the processor.

81 Procedure declarations in VISTA follow their calls, i.e. only
forward reference is allowed. This is logically more satisfactory
(the main program comes first) and matches MALPAS better than the
traditional rule of declaration before use. Recursion is not
possible, since the language does not allow pointers.

Variables and constants (lines 10..20) must be declared before
use in the conventional way. In this and most other respects
VISTA conforms to the normal Algol or Pascal block structure.
Brackets are interchangeable with BEGIN .. END but must be
correctly paired.

The peripheral location "keyboard" is assumed to deliver 0 until

a character is typed.

84 "upper" turns lower case letters in A to upper case.

- 25 -

-IlkU

Page 26

87 4 digit unsigned decimal output.

98 "digit" is nested within "print".

102 Division by repeated subtraction, since VIPER has (at present)
no divide instruction. The loop is never obeyed more than 9
times.

107 The peripheral location "screen" is assumed to make characters
visible in some way.

116 WILE TRUE gives an endless loop which can be left only by
BREAK or (in a procedure) RETURN.

117 The strings output by "message" must be known to the procedure
to in advance. It is not possible to hand over the address of an
122 arbitrary string since VISTA does not allow pointers.

126 A zero character terminates the string. Strings are stored
with the least-significant 8 bits of the word holding the first
character.

140 "right8" is nested inside "message".

142 These are "arithmetic" shifts which duplicate the sign bit.
Line 143 renders this unimportant. The alternative is an end-
around shift through B (e.g. A >> 1) which in this case would
do just as well.

149 Every program ends with FINISH

- 26 -

DOCUMENT CONTROL SHEET

Overall security classification of sheet VNN , S F EP

(As far as possible this sheet should contain only unclassified Information. If it is necessary to enrer
classified information, the box concerned must be marked to indicate the classification eq (R) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
Report 87014 1 nclassifi s i f IC a 4 'C

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location

known) Royal Signals and Radar Establishment

St Andrews Road, Malvern, Worcestershire WR14 3PS

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

Code (if known)

7. Title

THE VIPER MICROPROCESSOR

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference nap ers) Title, place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(t) Authors 3,4... 10. Date Vc. rel

Kershaw J 1987.11 26

11. Contract lumber 12. Period 13. Project 14. Other Reference

15. Distribution statement

Descriptors (or keywords)

continue on separate piece of paer

Abbtract

Most accidents are caused by human error. Computer control systems in aircraft,

chemical plant, nuclear reactors and so on could in principle prevent many

accidents, but in practice they are not reliable enough to be put in charge of
human lives. This Report describes some of the developments in computer hard-
ware and software which are needed before this situation can change, and intro-

duces the VIPER microprocessor which has been designed specifically for ultra-

reliable systems. In conjun,-tion with a number of other RSRE Publications
(see references) it defines the VIPER architecture formally and describes some

of its supporting software.

380/48

